Перевод: с английского на русский

с русского на английский

ГОСТ Р МЭК 60870-5-103-2005

  • 1 control system

    1. система числового программного управления станком
    2. система управления электропривода
    3. система управления (в теории автоматического управления)
    4. система управления (в телемеханике)
    5. система управления (в газотурбинных установках)
    6. система управления (в аналоговой вычислительной технике)
    7. система управления

     

    система управления
    Совокупность технических средств, предназначенных для управления аналоговой вычислительной машиной или системой в соответствии с командами оператора или программой.
    [Сборник рекомендуемых терминов. Выпуск 84. Аналоговая вычислительная техника. Академия наук СССР. Комитет научно-технической терминологии. 1972 г.]

    Тематики

    • аналоговая и аналого-цифровая выч.техн.

    EN

    DE

    FR

     

    система управления
    Система, используемая для управления, защиты, контроля и отображения информации о состоянии промышленной газотурбинной установки [газотурбинного двигателя] на всех режимах работы.
    Примечание
    Она включает систему управления пуском, системы управления и регулирования подачи топлива и частоты вращения ротора, датчики, устройства контроля подачи электропитания и другие средства управления, необходимые для правильного пуска, устойчивой работы, останова, ограничения режима работы и/или выключения установки при условиях, отличных от заданных.
    [ ГОСТ Р 51852-2001]

    Тематики

    EN

     

    система управления
    Применяется как мастер для канала связи, т.е. первичная станция в соответствии с МЭК 60870-5-2.
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Тематики

    • телемеханика, телеметрия

    EN

     

    система управления
    Система, состоящая из управляющего объекта и объекта управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    EN

     

    система управления электропривода
    Совокупность управляющих и информационных устройств и устройств сопряжения электропривода, предназначенных для управления электромеханическим преобразованием энергии с целью обеспечения заданного движения исполнительного органа рабочей машины.
    [ ГОСТ Р 50369-92]

    Тематики

    EN

    DE

     

    система числового программного управления станком
    СЧПУ

    Совокупность функционально взаимосвязанных и взаимодействующих технических и программных средств, обеспечивающих числовое программное управление станком.
    [ ГОСТ 20523-80]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > control system

  • 2 TAG

    1. ярлык
    2. указатель числа пройденных потоком данных узлов в сети
    3. ТЭГ
    4. техническая консультативная группа
    5. тег
    6. руководство по оценке технических проблем
    7. примешивать (в биотехнологии)
    8. передача эстафеты (биатлон)
    9. небольшой полип в виде выроста
    10. метка радиоактивным изотопом
    11. метка (в телекоммуникации)
    12. метка
    13. метить
    14. контактный штифт
    15. кабельный наконечник
    16. группа технологий и приложений электросвязи

     

    кабельный наконечник
    Контакт-деталь, обеспечивающая разъемное разборноеконтактное соединение между проводом или жилой кабеля и выводом электротехнического устройства или контактным зажимом.
    [ ГОСТ 23587-96]

    наконечник
    Часть, посредством которой проводник может быть соединен с управляющим устройством так, что его замена требует или применения специального инструмента или специального процесса, или специальной подготовки конца провода.
    Примечание - Пайка требует специального инструмента. Сварка требует специального процесса. Закрепление наконечника на проводнике рассматривают как специальную подготовку провода.
    [ГОСТ IЕС 60730-1-2011]

    EN

    termination
    part by which a conductor can be connected to a control in such a way that its replacement requires either a special purpose tool, a special process or a specially prepared end of the conductor
    Note 1 to entry: Soldering requires a special purpose tool. Welding requires a special process. A cable lug attached to a conductor is a specially prepared end.
    [IEC 60730-1, ed. 5.0 (2013-11)]

    FR

    connexion
    pièce permettant la connexion d'un conducteur à un dispositif de commande de telle manière que son remplacement nécessite un outil spécial, un procédé spécial ou une préparation spéciale de l'extrémité d'un conducteur
    Note 1 à l'article: Le soudage à l'étain nécessite un outil spécial. Le soudage électrique est un procédé spécial. La pose d'une cosse sur l'extrémité d'un conducteur est considérée comme une préparation spéciale.
    [IEC 60730-1, ed. 5.0 (2013-11)]

    5460_1

    1 - Хвостовик кабельного наконечника;
    2 - Зажимная часть

    5563
    [ ГОСТ 7386-80]

    Наконечник кабельный медный, закрепляемый опрессовкой.
    Кабельные наконечники должны изготавливаться из медных труб марки...
    [ ГОСТ 7386-80]

    Тематики

    EN

    FR

     

    контактный штифт

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    метить

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    метка (в телекоммуникации)
    Двоичный сигнал, регистрируемый и передаваемый в составе передачи данных о нарушениях.
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Тематики

    • телемеханика, телеметрия

    EN

     

    метка радиоактивным изотопом
    метить радиоактивным изотопом


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    передача эстафеты
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    tag
    switchover
    Another term for relaying.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    примешивать (в биотехнологии)
    Включать в вещество элементы или соединения, легко выявляемые, благодаря чему вещество может быть обнаружено и прослежен его метаболизм
    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    Тематики

    EN

     

    руководство по оценке технических проблем

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    тег
    признак
    управляющий код

    Элемент НТМL представляет из себя текст, заключенный в угловые скобки <>, является активным элементом, изменяющим представление следующей за ним информации. Может иметь некоторые атрибуты. Обычно имеются два тэга - открывающий и закрывающий. Например <b> и </b> - данные тэги описывают текст, находящийся между ними, как полужирный [http://www.webxpert.ru/slovar.html].
    [ http://www.morepc.ru/dict/]

    Тематики

    Действия

    Синонимы

    EN

     

    указатель числа пройденных потоком данных узлов в сети

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    ярлык
    Ндп. бирка
    Изделие заданных формы, размеров и материала, предназначенное для нанесения маркировки, прикрепляемое или прилагаемое к упаковке или продукции или вкладываемое в упаковку.
    [ ГОСТ 17527-2003]

    ярлык
    Изделие заданных формы, размеров и материала, предназначенное для нанесения маркировки, прикрепленное или прилагаемое к упаковке или продукции или вкладываемое в упаковку.
    [ ГОСТ Р 52463-2005

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    3.1.45 ТЭГ (tag): Служебный элемент, который размещен в начале заголовка и хранится вместе с данными, не может быть использован как самостоятельный элемент.

    Источник: ГОСТ Р 53531-2009: Телевидение вещательное цифровое. Требования к защите информации от несанкционированного доступа в сетях кабельного и наземного телевизионного вещания. Основные параметры. Технические требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > TAG

  • 3 informative interface

    1. информационный интерфейс

     

    информационный интерфейс
    Интерфейс устройства защиты, используемый для обмена данными с системой управления и не оказывающий влияния на функции защиты
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Тематики

    • телемеханика, телеметрия

    EN

    3.6 информационный интерфейс (informative interface): Интерфейс устройства защиты, используемый для обмена данными с системой управления и не оказывающий влияния на функции защиты.

    Источник: ГОСТ Р МЭК 60870-5-103-2005: Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщающий стандарт по информационному интерфейсу для аппаратуры релейной защиты оригинал документа

    Англо-русский словарь нормативно-технической терминологии > informative interface

  • 4 private range

    1. частный диапазон

     

    частный диапазон
    Диапазон, который может использоваться производителями для своих частных применений.
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Тематики

    • телемеханика, телеметрия

    EN

    Англо-русский словарь нормативно-технической терминологии > private range

  • 5 control direction

    1. направление управления
    2. вид коммутационной операции (включение или отключение)

     

    вид коммутационной операции (включение или отключение)
    -
    [Интент]

    Параллельные тексты EN-RU

    The interlock conditions are defined in the interlocking logic for each switching unit within the bay that is subject to control actions and for eachcontrol direction (Open/Close).

    If the station interlock is active, it may be cancelled selectively for each switching unit and each control direction.

    [Schneider Electric]

    Блокировочные зависимости определяют отдельно для каждого коммутационного аппарата ячейки и отдельно для каждого вида коммутационной операции (включения и отключения).

    Если блокировочная зависимость, реализованная в системе управления подстанцией, активна, то ее можно отменить выборочно для каждого коммутационного аппарата и для каждого вида коммутационной операции.

    [Перевод Интент]

    Тематики

    EN

     

    направление управления
    Направление передачи от контролирующей станции к контролируемой станции.
    [ ГОСТ Р МЭК 60870-5-101-2006]

    Тематики

    • телемеханика, телеметрия

    EN

    Англо-русский словарь нормативно-технической терминологии > control direction

  • 6 monitor direction

    1. направление контроля

     

    направление контроля
    Направление передачи от контролируемой станции к контролирующей станции.
    [ ГОСТ Р МЭК 60870-5-101-2006]

    Тематики

    • телемеханика, телеметрия

    EN

    Англо-русский словарь нормативно-технической терминологии > monitor direction

  • 7 companion standard

    1. обобщающий стандарт

     

    обобщающий стандарт
    Стандарт, добавляющий семантику к определениям базового стандарта или функционального профиля; это может выражаться определением конкретного использования объектов информации или определением дополнительных объектов информации, сервисных процедур и параметров базовых стандартов. Примечание - Обобщающий стандарт не меняет стандартов, к которым он относится, но проясняет взаимоотношения между ними при их совместном использовании в определенной области.
    [ ГОСТ Р МЭК 60870-5-101-2006]

    Тематики

    • проектирование, документация

    EN

    3.1 обобщающий стандарт (companion standard): Обобщающий стандарт добавляет семантику к определениям базового стандарта или функционального профиля. Это может выражаться в определении конкретного использования информационных объектов или в определении дополнительных информационных объектов, сервисных процедур и параметров базовых стандартов.

    Примечание - Обобщающий стандарт не изменяет стандартов, на которые ссылается, но проясняет взаимоотношения при их совместном использовании в определенной области.

    Источник: ГОСТ Р МЭК 60870-5-103-2005: Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщающий стандарт по информационному интерфейсу для аппаратуры релейной защиты оригинал документа

    Англо-русский словарь нормативно-технической терминологии > companion standard

  • 8 clock synchronization

    1. синхронизация по тактам
    2. синхронизация времени

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

     

    синхронизация по тактам
    тактовая синхронизация


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > clock synchronization

  • 9 time synchronization

    1. синхронизация времени

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > time synchronization

  • 10 compatible range

    Англо-русский словарь нормативно-технической терминологии > compatible range

  • 11 ЕРА

    1. архитектура повышенной производительности

     

    архитектура повышенной производительности
    Эталонная модель протокола, предусматривающая в отличие от полной семиуровневой архитектуры в соответствии с базовой эталонной моделью ИСО/МЭК 7498-1 трехуровневую архитектуру с целью получения более быстрого времени реакции для критической информации, но с ограниченными услугами.
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Тематики

    • телемеханика, телеметрия

    EN

    Англо-русский словарь нормативно-технической терминологии > ЕРА

  • 12 enhanced performance architecture

    1. архитектура повышенной производительности

     

    архитектура повышенной производительности
    Эталонная модель протокола, предусматривающая в отличие от полной семиуровневой архитектуры в соответствии с базовой эталонной моделью ИСО/МЭК 7498-1 трехуровневую архитектуру с целью получения более быстрого времени реакции для критической информации, но с ограниченными услугами.
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Тематики

    • телемеханика, телеметрия

    EN

    Англо-русский словарь нормативно-технической терминологии > enhanced performance architecture

  • 13 AR blocked

    1. АПВ блокировано

     

    АПВ блокировано

    [ ГОСТ Р МЭК 60870-5-103-2005]

    Тематики

    • телемеханика, телеметрия

    EN

    Англо-русский словарь нормативно-технической терминологии > AR blocked

  • 14 auto-recloser on/off

    1. АПВ включить/отключить

     

    АПВ включить/отключить

    [ ГОСТ Р МЭК 60870-5-103-2005]

    Тематики

    • телемеханика, телеметрия

    EN

    • auto-recloser on/off

    Англо-русский словарь нормативно-технической терминологии > auto-recloser on/off

  • 15 activate characteristic

    Англо-русский словарь нормативно-технической терминологии > activate characteristic

  • 16 repetition cycle time

    Англо-русский словарь нормативно-технической терминологии > repetition cycle time

  • 17 selection of standard information numbers

    Англо-русский словарь нормативно-технической терминологии > selection of standard information numbers

  • 18 selection of standard information numbers in control direction

    Англо-русский словарь нормативно-технической терминологии > selection of standard information numbers in control direction

  • 19 CB 'on' by AR

    Англо-русский словарь нормативно-технической терминологии > CB 'on' by AR

  • 20 CB 'on' by long-time AR

    Англо-русский словарь нормативно-технической терминологии > CB 'on' by long-time AR

См. также в других словарях:

  • ГОСТ Р МЭК 60870-5-103-2005 — 86 с. (12) Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщающий стандарт по информационному интерфейсу для аппаратуры релейной защиты раздел 33.200 …   Указатель национальных стандартов 2013

  • ГОСТ Р МЭК 60870-5-103-2005: Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщающий стандарт по информационному интерфейсу для аппаратуры релейной защиты — Терминология ГОСТ Р МЭК 60870 5 103 2005: Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщающий стандарт по информационному интерфейсу для аппаратуры релейной защиты оригинал документа: 3.2 архитектура повышенной… …   Словарь-справочник терминов нормативно-технической документации

  • 60870-5-103 — ГОСТ Р МЭК 60870 5 103{ 2005} Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщающий стандарт по информационному интерфейсу для аппаратуры релейной защиты. ОКС: 33.200 КГС: П77 Устройства и аппаратура телеизмерения …   Справочник ГОСТов

  • система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… …   Словарь-справочник терминов нормативно-технической документации

  • режим — 36. режим [частота вращения] «самоходности»: Режим [минимальная частота вращения выходного вала], при котором газотурбинный двигатель работает без использования мощности пускового устройства при наиболее неблагоприятных внешних условиях. Источник …   Словарь-справочник терминов нормативно-технической документации

  • 33.200 — Телемеханика. Телеметрия ГОСТ 2.752 71 ГОСТ 4.183 85 ГОСТ 4.186 85 ГОСТ 4.187 85 ГОСТ 4.199 85 ГОСТ 26.005 82 ГОСТ 26.205 88 ГОСТ 19619 74 ГОСТ 29323 …   Указатель национальных стандартов 2013

  • система управления — 24. система управления: Система, используемая для управления, защиты, контроля и отображения информации о состоянии промышленной газотурбинной установки [газотурбинного двигателя] на всех режимах работы. Источник: ГОСТ Р 51852 2001: Установки… …   Словарь-справочник терминов нормативно-технической документации

  • направление — 3.16 направление (conductor): Внешняя колонна обсадных труб скважины. Источник: ГОСТ Р 54483 2011: Нефтяная и газовая промышленность. Платформы морские для нефтегазодобычи. Общие требования …   Словарь-справочник терминов нормативно-технической документации

  • архитектура — (architecture): Набор элементов конструкции или описательных представлений, необходимый для такого описания объекта, чтобы он мог быть создан в соответствии с требованиями (с нужным качеством), а также обслуживаться в течение всего срока его… …   Словарь-справочник терминов нормативно-технической документации

  • информационный — 3.1.24 информационный (informative): По ИСО/МЭК 14252. Источник: Р 50.1.041 2002: Информационные технологии. Руководство по проектированию профилей …   Словарь-справочник терминов нормативно-технической документации

  • Режим передачи для прикладных данных — 8.3.1 Режим передачи для прикладных данных В настоящем стандарте используется исключительно режим 1 в соответствии с МЭК 60870 5 4, подпункт 4.10 первым передается младший байт. Источник …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»